Phagocytic entry of Legionella pneumophila into macrophages through phosphatidylinositol 3,4,5-trisphosphate-independent pathway.

نویسندگان

  • Toshihiko Harada
  • Takashi Tanikawa
  • Yasunori Iwasaki
  • Masao Yamada
  • Yasuyuki Imai
  • Masaki Miyake
چکیده

Legionella pneumophila, a causative agent of Legionnaire's disease, is an intracellular pathogen. It intervenes in the signal transduction of macrophages by secreting effector molecules through the Icm/Dot type IV secretion system (T4SS). There is a connection between signaling cascades that regulate phagocytosis and the production of reactive oxygen species (ROS). Class I phosphatidylinositol 3-kinase (PI3-K) and its product phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) play key roles in the reorganization of cytoskeleton (phagocytosis) and activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (ROS production). We investigated the production of PI(3,4,5)P3 and recruitment of class I PI3-K and Rac1 during phagocytosis of L. pneumophila by macrophages. Transient recruitment of class I PI3-K as well as PI(3,4,5)P3 production was observed around a phagocytosed T4SS mutant LELA3118 or avirulent mutant 25D in an early stage of infection. In contrast, class I PI3-K was recruited while accumulation of PI(3,4,5)P3 was not observed around wild type JR32. Immunoglobulin G (IgG)-opsonized live JR32, which would activate class I PI3-K through the Fcγ receptor pathway, did not induce PI(3,4,5)P3 production. Regardless of whether wild type or mutants were used, transient Rac1 accumulation was observed around bacteria. These results indicate that the phagocytosis of wild type L. pneumophila occurs via a special mechanism in which PI(3,4,5)P3 production is absent. This suggests that L. pneumophila may inhibit the production of PI(3,4,5)P3, but not the recruitment of class I PI3-K and Rac1, in a T4SS-dependent manner. L. pneumophila may start the modulation of host signaling cascade immediately after contact with host cells to evade the ROS-dependent bactericidal system while completing entry into macrophages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phagocytosis of wild-type Legionella pneumophila occurs through a wortmannin-insensitive pathway.

Wild-type Legionella pneumophila grows in human macrophages within a replicative phagosome, avoiding lysosomal fusion, while nonreplicative mutants are killed in lysosomes. Wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, blocks phagocytosis of an avirulent mutant, but not of wild-type L. pneumophila, without affecting membrane ruffling and actin polymerization. These results show ...

متن کامل

Non-Opsonic Phagocytosis of Legionella pneumophila by Macrophages Is Mediated by Phosphatidylinositol 3-Kinase

BACKGROUND Legionella pneumophila, is an intracellular pathogen that causes Legionnaires' disease in humans, a potentially lethal pneumonia. L. pneumophila has the ability to enter and replicate in the host and is essential for pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS Phagocytosis was measured by cell invasion assays. Construction of PI3K mutant by PCR cloning and expression of dominant n...

متن کامل

Legionella pneumophila Exploits PI(4)P to Anchor Secreted Effector Proteins to the Replicative Vacuole

The causative agent of Legionnaires' disease, Legionella pneumophila, employs the intracellular multiplication (Icm)/defective organelle trafficking (Dot) type IV secretion system (T4SS) to upregulate phagocytosis and to establish a replicative vacuole in amoebae and macrophages. Legionella-containing vacuoles (LCVs) do not fuse with endosomes but recruit early secretory vesicles. Here we analy...

متن کامل

Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila.

Since Legionella pneumophila is an intracellular pathogen, entry into and replication within host cells are thought to be critical to its ability to cause disease. L. pneumophila grown in one of its environmental hosts, Acanthamoeba castellanii, is phenotypically different from L. pneumophila grown on standard laboratory medium (BCYE agar). Although amoeba-grown L. pneumophila displays enhanced...

متن کامل

PilY1 Promotes Legionella pneumophila Infection of Human Lung Tissue Explants and Contributes to Bacterial Adhesion, Host Cell Invasion, and Twitching Motility

Legionnaires' disease is an acute fibrinopurulent pneumonia. During infection Legionella pneumophila adheres to the alveolar lining and replicates intracellularly within recruited macrophages. Here we provide a sequence and domain composition analysis of the L. pneumophila PilY1 protein, which has a high homology to PilY1 of Pseudomonas aeruginosa. PilY1 proteins of both pathogens contain a von...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biological & pharmaceutical bulletin

دوره 35 9  شماره 

صفحات  -

تاریخ انتشار 2012